?數控技術不僅給傳統制造業帶來了革命性的變化,使制造業成為工業化的象征,而且隨著數控技術的不斷發展和應用領域的擴大,它對國計民生的一些重要行業的發展起著越來越重要的作用。盡管十多年前就出現了高精度、高速度的趨勢,但是科學技術的發展是沒有止境的,高精度、高速度的內涵也在不斷變化,正在向著精度和速度的極限發展。
?

從世界上數控技術發展的趨勢來看,主要有如下幾個方面:
1.機床的高速化、精密化、智能化、微型化發展
隨著汽車、航空航天等工業輕合金材料的廣泛應用,高速加工已成為制造技術的重要發展趨勢。高速加工具有縮短加工時間、提高加工精度和表面質量等優點,在模具制造等領域的應用也日益廣泛。機床的高速化需要新的數控系統、高速電主軸和高速伺服進給驅動,以及機床結構的優化和輕量化。高速加工不僅是設備本身,而且是機床、刀具、刀柄、夾具和數控編程技術,以及人員素質的集成。高速化的最終目的是高效化,機床僅是實現高效的關鍵之一,絕非全部,生產效率和效益在“刀尖”上。
2.五軸聯動加工和復合加工機床快速發展
采用五軸聯動對三維曲面零件進行加工,可用刀具最佳幾何形狀進行切削,不僅光潔度高,而且效率也大幅度提高。一般認為,1臺五軸聯動機床的效率可以等于2臺三軸聯動機床,特別是使用立方氮化硼等超硬材料銑刀進行高速銑削淬硬鋼零件時,五軸聯動加工可比三軸聯動加工發揮更高的效益。但過去因五軸聯動數控系統主機結構復雜等原因,其價格要比三軸聯動數控機床高出數倍,加之編程技術難度較大,制約了五軸聯動機床的發展。當前數控技術的發展,使得實現五軸聯動加工的復合主軸頭結構大為簡化,其制造難度和成本大幅度降低,數控系統的價格差距縮小。因此五軸聯動技術促進了復合主軸頭類型五軸聯動機床和復合加工機床的發展。
3.新結構、新材料及新設計方法的發展
機床的高速化和精密化要求機床的結構簡化和輕量化,以減少機床部件運動慣量對加工精度的負面影響,大幅度提高機床的動態性能。例如,借助有限元分析對機床構件進行拓撲優化,設計箱中箱結構以及采用空心焊接結構和使用鉛合金材料等已經開始從實驗室走向實用。
我國機床設計和開發手段要盡快從二維CAD向三維CAD過渡。三維建模和仿真是現代設計的基礎,是企業技術優勢的源泉。在此三維設計基礎上進行CAD/CAM/CAE/PDM的集成,加快新產品的開發速度,保證新產品的順利投產,并逐步實現產品生命周期管理。
4.開放式數控系統的發展
許多國家對開放式數控系統進行了研究,數控系統開放化已經成為數控系統的未來之路。所謂開放式數控系統,就是數控系統的開發可以在統一的運行平臺上,面向機床廠家和最終用戶,通過改變、增加或剪裁結構對象(數控功能),形成系列化,并可方便地將用戶的特殊應用和技術訣竅集成到控制系統中,快速實現不同品種、不同檔次的開放式數控系統,形成具有鮮明個性的名牌產品。開放式數控系統有三種形式:
(1)全開放系統,即基于微機的數控系統,以微機作為平臺,采用實時操作系統,開發數控系統的各種功能,通過伺服卡傳送數據,控制坐標軸電動機的運動。
(2)嵌入系統,即CNC+PC,CNC控制坐標軸電動機的運動,PC作為人機界面和網絡通信。
(3)融合系統,在CNC的基礎上增加PC主板,提供鍵盤操作,提高人機界面功能。
開放式數控系統的體系結構規范、通信規范、配置規范、運行平臺、數控系統功能庫以及數控系統功能軟件開發工具等是當前研究的核心。
5.可重組制造系統的發展
隨著產品更新換代速度的加快,專用機床的可重構性和制造系統的可重組性日益重要。通過數控加工單元和功能部件的模塊化,可以對制造系統進行快速重組和配置,以適應變型產品的生產需要。機械、電氣和電子、液體和氣體,以及控制軟件的接口規范化和標準化是實現可重組性的關鍵。
6.虛擬機床和虛擬制造的發展
為了加快新機床的開發速度和質量,在設計階段借助虛擬現實技術,可以在機床還沒有制造出來以前,就能夠評價機床設計的正確性和使用性能,在早期發現設計過程的各種失誤,減少損失,提高新機床開發的質量。